
篇1:中考数学解题策略
答题思想是关键,怎么才能交出满意答卷?教育网小编给大家说说关于 题做题思路,供大家学习一下。
中考数学题做题思想,一般要经历三个步骤:
1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;
2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;
3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。
数学的表达,有3种方式:
1.文字语言,即用汉字表达的内容;
2.图形语言,如几何的图形,函数的图象;
3.符号语言,即用数学符号表达的内容,比如AB∥CD。
在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。
先来看转化思想:
我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。
所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。
以上是中考数学题做题思路的具体介绍,希望对大家有所用处,更多精彩内容关注教育网。
篇2:中考数学解题策略
中考数学压轴题解题思路大分享
1、以坐标系为桥梁,运用数形结合思想
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
篇3:中考数学解题策略
为了选择自己理想的高中,就给现在冲刺 ,教育网为考生的梦想,给大家总结了关于 中考冲刺-解题思路,希望对考生有所帮助。
选择填空题答题套路
选择题十大速解方法:
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法:
直接法、特殊化法、数形结合法、等价转化法。
解答题答题模板
专题一、三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
专题六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
专题七、离散型随机变量的均值与方差
1、解题路线图
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2、构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2、构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
上述 冲刺-解题思路的内容,希望考生能够灵活运用,更多资讯关注教育网。
篇4:中考数学解题策略
中考解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。
1、以坐标系为桥梁,运用数形结合思想
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、分题得分
中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
6、分段得分
一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是分段评分,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
篇5:中考数学解题策略
有关锐角三角函数的问题,常用下面几种方法:
一、设参数
例1. 在 中, ,如果 ,那么sinB的值等于 )
解析:如图1,要求sinB的值,就是求 的值,而已知的 ,也就是
可设
则
,选B
图1
二、巧代换
例2. 已知 ,求 的值。
解析:已知是正切值,而所求的是有关正弦、余弦的值,可以利用关系式 ,作代换 ,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以 。
再把 代入,得:原式
三、妙估计
例3. 若太阳光与地面成 角,一棵树的影长为10m,则树高h的范围是取 )
A. B.
C. D.
解析:如图2,树高 ,要确定h的范围,可根据正切函数是增函数,估计#p#分页标题#e#
即
,故选B
图2
四、善转化
例4. 在 中, ,求AB的长。
解析:注意题中所说的 并不是直角三角形!如图3, 不是直角三角形,为了利用 ,可以作 于D,这样 就是一直角三角形中的一角, 也出现在另一个直角三角形中,
图3
设 ,则
由 ,得
即CD=1,BD=3
再有
五、适时构造
例5. 不查表,不用计算器,求 的值。
解析:可以先画 ,使 ,如图4,延长CA至D,使AD=AB,连结BD,则 ,
图4
设BC=1,则
#p#分页标题#e#
六、准确分类
例6. ;曙光中学;有一块三角形形状的花圃ABC,现可直接测量到 ,AC=40米,BC=25米,请你求出这块花圃的面积。
图5 图6
解析: 中,已知两边和其中一边的对角,这时特别注意 的形状不惟一!要分两种情况分别求出,如图5、图6,作 ,分出直角三角形后,可求得面积应为:
篇6:中考数学解题策略
第二轮复习思路分析
1、对基础知识进一步挖掘与延伸
总体上强调的是对基础知识的考查和对基础知识延伸方面的考查,而且中考命题的最重要的一个原则就是要源于教材,并且要高于教材。因此,教师在带领学生进行中考数学的第二轮复习的时候,需要从课本的知识和内容入手,通过对基础知识的延伸方面寻找复习的突破口。
在第一轮复习中,学生已经全面复习基础知识的同时,在第二轮进行基础知识的延伸,对学生已经掌握的知识进行拔高。因此,在中考数学的二轮复习中,要回归课本,回归教材,只有全面地将课本上的知识进行延伸,透彻的理解好课本上知识和解题方法,才能够在中考数学解题中寻找到突破口,从而顺利解出试题。
2、把握专题复习
对于中考数学的第二轮复习应将重点放在对知识和方法的专题练习上。通过对于知识的专题复习,进一步巩固一轮复习中的基础知识,从而加快对于知识的整合。
因此,在第二轮复习中,教师应把握几个大知识点的专题复习方面。例如,可以分为“最值问题”,“方案问题”,“规律问题”,“不等式应用问题”,“面积问题”等专题,通过专题的训练,让学生能够重点掌握每一块的知识,然后在进行知识的融合,能够达到很好的复习效果。
篇7:中考数学解题策略
几何证明题的思路
很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。
对于证明题,有三种思考方式:
1.正向思维。
对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
2.逆向思维。
顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。
同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。
例如:
可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…
这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
3.正逆结合。
对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。
初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路。
比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。
给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
证明题要用到哪些原理
要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。
下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
三、证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
四、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
五、证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角的不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
十、证明四点共圆
1.对角互补的四边形的顶点共圆。
2.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆。
篇8:中考数学解题策略
一、当已知两个三角形中有两边对应相等时,找夹角相等SAS)或第三边相等SSS)。
例1. 如图1,已知:AC=BC,CD=CE,∠ACB=∠DCE=60°,且B、C、D在同一条直线上。
求证:AD=BE
分析:要证AD=BE
注意到AD是△ABD或△ACD的边,BE是△DEB或△BCE的边,只需证明△ABD≌△DEB或△ACD≌△BCE,显然△ABD和△DEB不全等,而在△ACD和△BCE中,AC=BC,CD=CE,故只需证它们的夹角∠ACD=∠BCE即可。
而∠ACD=∠ACE+60°,∠BCE=∠ACE+60°
故△ACD≌△BCESAS)
二、当已知两个三角形中有两角对应相等时,找夹边对应相等ASA)或找任一等角的对边对应相等AAS)
例2. 如图2,已知点A、B、C、D在同一直线上,AC=BD,AM∥CN,BM∥DN。
求证:AM=CN
分析:要证AM=CN
只要证△ABM≌△CDN,在这两个三角形中,由于AM∥CN,BM∥DN,可得
∠A=∠NCD,∠ABM=∠D
可见有两角对应相等,故只需证其夹边相等即可。
又由于AC=BD,而
故AB=CD
故△ABM≌△CDNASA)
三、当已知两个三角形中,有一边和一角对应相等时,可找另一角对应相等AAS,ASA)或找夹等角的另一边对应相等SAS)
例3. 如图3,已知:∠CAB=∠DBA,AC=BD,AC交BD于点O。
求证:△CAB≌DBA
分析:要证△CAB≌△DBA
在这两个三角形中,有一角对应相等∠CAB=∠DBA)
一边对应相等AC=BD)
故可找夹等角的边AB、BA)对应相等即可利用SAS)。
四、已知两直角三角形中,当有一边对应相等时,可找另一边对应相等或一锐角对应相等
例4. 如图4,已知AB=AC,AD=AG,AE⊥BG交BG的延长线于E,AF⊥CD交CD的延长线于F。
求证:AE=AF
分析:要证AE=AF
只需证Rt△AEB≌Rt△AFC,在这两个直角三角形中,已有AB=AC
故只需证∠B=∠C即可
而要证∠B=∠C
需证△ABG≌△ACD,这显然易证SAS)。#p#分页标题#e#
五、当已知图形中无现存的全等三角形时,可通过添作辅助线构成证题所需的三角形
例5. 如图5,已知△ABC中,∠BAC=90°,AB=AC,BD是中线,AE⊥BD于F,交BC于E。
求证:∠ADB=∠CDE
分析:由于结论中的两个角分属的两个三角形不全等,故需作辅助线。注意到AE⊥BD,∠BAC=90°,有∠1=∠2,又AB=AC。故可以∠2为一内角,以AC为一直角边构造一个与△ABD全等的直角三角形,为此,过C作CG⊥AC交AE的延长线于G,则△ABD≌△CAG,故∠ADB=∠CGA。
对照结论需证∠CGA=∠CDE
又要证△CGE≌△CDE,这可由
CG=AD=CD,∠ECG=∠EBA=∠ECD,CE=CE而获证。