
篇1:中考数学中的图形变换技巧
近几年的 ,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。不过这些传说中的主角,并没有大家想象的那么神秘,只是我们需要找出这些压轴题目的切入点。
切入点一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
篇2:中考数学中的图形变换技巧
“图形与变换”主要包括图形的翻折(轴对称) 、图形的平移、图形的旋转三个部分。不同的变换下图形与图形之间具有不同的性质,而这些基本图形和基本性质及其灵活应用对于合理的推理和成功解题起着至关重要的作用。这部分内容恰又是天津市 的热点和难点。
下面就以几道“图形与变换”中翻折的典型例题来说明这部分内容的特点和学习方法,以供大家参考。
南开中学 张常军
例1.如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折叠,当D′F⊥CD时,■的值为
A. ■
B.■
C.■
D. ■
分析:在翻折变换后得到全等图形的基础上,本题考查的是△FMC和△BD'M两个基本图形,其中△FMC为30°、60°、90°的基本图形,三边的比为1:■:2;△BD'M是30°、30°、120°的基本图形,三边的比为1:1:■。
再利用FD=FD' 找到FC和FD的关系得知本题选A。
例2.如图,在正方形纸片ABCD中,E、F分别是AD、BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开。则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形。正确的有 A.1个 B.2个
C.3个 D.4个
分析:在翻折变换后得到全等图形的基础上,本题考查的是△BNC为等边三角形的基本图形,这样分析②③④均为正确命题,故本题选C。
例3.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、点B(0,6)、点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP。设BP=t。
(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可)。
图③
分析:本题第一问考查的是翻折之后的全等图形和△BOP为30°、60°、90°的基本图形,进而通过三边的比例关系(也可理解为特殊角的三角函数值),由OB=6得到点P的坐标为(2■,6)。
第二问则深入考查了同学们对题目进行深入挖掘的能力,由矩形条件下两次翻折的特点得到∠OPQ=90°,进而得到△BOP与△CPQ这组K字形相似的三角形,由相似三角形对应边成比例得到第二问的结果为m=■t2-■t+6(0<11)。
而第三问还在深入挖掘图形隐含条件的基础上考查了同学们的绘图能力。
如图③,由此图形得到△POC'为等腰三角形,发现C'A=BP=T,再由RT△AQC'中三边的关系利用勾股定理找到T与M的另一组关系,进而解出P的坐标为(■,6)或(■,6);或者由△PMC'与△C'AQ这组K字的相似三角形找到T与M的另一组关系,解出P的坐标也可以。
< P>#p#分页标题#e#
图形变换考查
这几种能力
通过以上三个典型例题我们不难发现,要想顺利解出变换类的题目,首先要对基本图形的基本性质非常熟悉,在此基础上利用不同变换下图形与图形的关系深入挖掘图形性质,以相似、特殊角的三角函数值和勾股定理为媒介找到相应的数量关系方可迎刃而解。
而这其中考查了几个能力:图形的基础知识及其灵活运用,对方程的理解能力,较高的绘图能力,动态点的感知能力。
现在首先要熟悉基本图形的基本性质,如我们刚刚提到的“30°、60°、90°的三角形性质”;“30°、30°、120°的三角形性质”;“45°、45°、90°的三角形性质”;“K字形的相似三角形”等。
同时要对审题时的敏感词提起重视,比如“直线”、“射线”、“线段”、“坐标轴上”等语句,语句不同,运动的分类情况也不同,进而导致解的个数不同。
另外一定的绘图能力也是平时就应该培养的,要敢于根据变换的不同绘出应得的图形。平时多体会,多练习,不要完全依靠老师,老师讲我才听的做法是不可取的。提示大家多读几遍题目,深入挖掘题目隐含的已知条件也是成功解题必不可少的能力。
篇3:中考数学中的图形变换技巧
二次函数是初中数学中最精彩的内容之一,也是历年 的热点和难点。其中,关于函数解析式的确定是非常重要的题型。而今年的中考正是面临新课程改革,教材的内容和学习要求变化较大,其中一个突出的变化就是强化了对图形变换的要求,那么二次函数和图形变化的结合,将是同学们在学习中不可忽视的内容。
图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。
1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____
分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。
2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。
分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2 4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x 1)2-4。
3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180
篇4:中考数学中的图形变换技巧
图形与变换是新课标的重要内容,它既有利于考查学生的动手操作能力和空间思维能力,又培养了学生的创新意识和综合运用知识的能力,因此成为近年来 命题的热点。
旋转是图形之间的一种主要变换,可以将直线、角、三角形、四边形甚至圆等各种几何图形旋转。在旋转过程中,图形上的每一点都绕着旋转中心旋转了相同的角度,线段的长度与角的大小都没有改变,图形的形状与大小没有发生变化。在解决旋转变换题时要充分利用以上结论挖掘题目中的条件。下面我们以中考题为例,一起来感受旋转这一美丽的变换。
[例1](北京)在平面直角坐标系xOy中,直线 绕点O顺时针旋转90o得到直线l,直线l与反比例函数 的图象的一个交点为A(a,3),试确定反比例函数的解析式。
分析 直线 是第二、四象限夹角的平分线,绕点O顺时针旋转90
篇5:中考数学中的图形变换技巧
中考数学备考指导资料:几何图形变换的切入点
中考复习最忌心浮气躁,急于求成。指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。要扎扎实实地复习,一步一步地前进,下文为大家准备了中考数学备考指导资料的内容。
实践操作性试题正逐渐成为中考命题的热点,下面,我们通过一个例题谈谈如何更好更快地找到解决问题的切入点。
例已知∠AOB=90°,OM是∠AOB的角平分线,按以下要求解答问题
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,E.
①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,PG=PD,求△POD与△PDG的面积之比;(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长。(见题图)
紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。如本例中,PC与PD始终保持相等关系,如果我们能认识到这一点,才可能考虑利用第①题的证明方法证PC=PD(如图丁)进而得到∠PCH=∠PDN,再结合相似三角形性质易得∠PCH=∠PDN=∠CDO=22.5°=∠OPC最后得到OP=OC,这样做比使用其他方法计算要简单得多,再如、压轴题第(2)小题,也都需要使用第(1)小题的证明方法或结论。
展开联想,寻找解决过的问题
尽管已经做过了许多复习题,但考试中碰到的压轴题又往往是新的面孔,如何在新老问题之间找到联系呢?
请同学们牢记,在题目中你总可以找到与你解决过的问题有相类似的情况,可能图形相似,可能条件相似,可能结论相似,此时你就应考虑原来题目是怎样解决的,与现题目有何不同。原有的题目是如何解决的,所使用的方法或结论在这里是不是可以使用,或有借鉴之处。
构造定理所需的图形或基本图形
在解决问题的过程中,有时添辅助线是必不可少的。中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形,如本例第一个证明就是利用角平分线上的点到角两边距离相等这一定理(如图甲);再如本市压轴题的第①题构造图形也是利用这一定理。
做不出、找相似,有相似,用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
如本题第(1)题的第②小题即证ΔPOD∽ΔPDG然后运用相似三角形的性质。第②题则是直接使用相似三角形的性质。再如中考压轴题的第(3)题,也是先要利用相似三角形性质进行计算,再证明相似。
在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到。如本例第②题中,“直角边与直线OA,直线OB分别交于点C、E”,与第①题的叙述“与OA,OB交于C、E”,有明显差别,从射线变为直线,所以分别产生图丙和图丁,因此考生在读题时千万注意此类变化,看清楚是“边”还是“射线”或是“直线”。再如压轴题,也是此类情况。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。