
篇1:中考数学:掌握二次函数的核心技巧
二次函数(4个考点) 考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数 考核要求: (1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念; (2)知道常值函数; (3)知道函数的表示方法,知道符号的意义。 考点11:用待定系数法求二次函数的解析式 考核要求: (1)掌握求函数解析式的方法; (2)在求函数解析式中熟练运用待定系数法。 注意求函数解析式的步骤:一设、二代、三列、四还原。 考点12:画二次函数的图像 考核要求: (1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像 (2)理解二次函数的图像,体会数形结合思想; (3)会画二次函数的大致图像。 考点13:二次函数的图像及其基本性质 考核要求: (1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系; (2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。 注意: (1)解题时要数形结合; (2)二次函数的平移要化成顶点式。
篇2:中考数学:掌握二次函数的核心技巧
一、选择题
4.(天津市,第12题3分)已知二次函数y=ax2+bx+c(a0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:
①b2﹣4ac>0;②abc<0;③m>2.
其中,正确结论的个数是()
A.0B.1C.2D.3
考点:二次函数图象与系数的关系.
分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;
先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;
一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.
解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,
b2﹣4ac>0,故①正确;
②∵抛物线的开口向下,
a<0,
∵抛物线与y轴交于正半轴,
c>0,
∵对称轴x=﹣>0,
ab<0,
∵a<0,
b>0,
abc<0,故②正确;
③∵一元二次方程ax2+bx+c﹣m=0没有实数根,
y=ax2+bx+c和y=m没有交点,
由图可得,m>2,故③正确.
故选D.
点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
篇3:中考数学:掌握二次函数的核心技巧
12.(o安徽省,第9题4分)矩形ABCD中,AB=3,BC=4,动点P从A点出发,按ABC的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()
考点:动点问题的函数图象.
分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出APB=PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.
解答:解:①点P在AB上时,03,点D到AP的距离为AD的长度,是定值4;
②点P在BC上时,3<x5,
∵APB+BAP=90,
PAD+BAP=90,
APB=PAD,
又∵DEA=90,
△ABP∽△DEA,
点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.
篇4:中考数学:掌握二次函数的核心技巧
11(o丽水,第10题3分),AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EFDE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()
考点:全等三角形的判定与性质;函数关系式;相似三角形的判定与性质..
分析:作FGBC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.
解答:
解:作FGBC于G,
∵DEB+FEC=90,DEB+DBE=90;
BDE=FEG,
在△DBE与△EGF中
△DBE≌△EGF,
EG=DB,FG=BE=x,
EG=DB=2BE=2x,
GC=y﹣3x,
∵FGBC,ABBC,
FG∥AB,
CG:BC=FG:AB,
即=,
点评:本题考查了三角形全等的判定和性质,以及平行线的性质,辅助线的做法是解题的关键.
篇5:中考数学:掌握二次函数的核心技巧
10(o湖北黄石,第10题3分)AB是半圆O的直径,点P从点A出发,沿半圆弧AB顺时针方向匀速移动至点B,运动时间为t,△ABP的面积为S,则下列图象能大致刻画S与t之间的关系的是()
考点:动点问题的函数图象.
分析:根据点P到AB的距离变化,利用三角形的面积分析解答即可.
解答:解:点P在弧AB上运动时,随着时间t的增大,点P到AB的距离先变大,
当到达弧AB的中点时,最大,
然后逐渐变小,直至到达点B时为0,
并且点P到AB的距离的变化不是直线变化,
∵AB的长度等于半圆的直径,
△ABP的面积为S与t的变化情况相同,
点评:本题考查了动点问题的函数图象,读懂题目信息,理解△ABP的面积的变化情况与点P到AB的距离的变化情况相同是解题的关键.
篇6:中考数学:掌握二次函数的核心技巧
9(o四川广安,第9题3分)在△ABC中,AC=BC,有一动点P从点A出发,沿ACBA匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()
考点:动点问题的函数图象
分析:该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.
解答:解:如图,过点C作CDAB于点D.
∵在△ABC中,AC=BC,
AD=BD.
①点P在边AC上时,s随t的增大而减小.故A、B错误;
②当点P在边BC上时,s随t的增大而增大;
③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;
④当点P在线段AD上时,s随t的增大而增大.
点评:本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.
篇7:中考数学:掌握二次函数的核心技巧
二、填空题
6(o江西抚州,第8题,3分)一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是
解析:∵桶口的半径是杯口半径的2倍,水注满杯口周围所用时间是注满杯子所用时间的3倍,
7.(山东济南,第12题,3分),直线与轴,轴分别交于两点,把沿着直线翻折后得到,则点的坐标是
【解析】连接,由直线可知,故,点为点O关于直线的对称点,故,是等边三角形,点的横坐标是长度的一半,纵坐标则是的高3,故选A.
8.(o四川内江,第12题,3分),已知A1、A2、A3、、An、An+1是x轴上的点,且OA1=A1A2=A2A3==AnAn+1=1,分别过点A1、A2、A3、、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、、Bn、Bn+1,连接A1B2、B1A2、B2A3、、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、、Sn,则Sn为()
考点:一次函数图象上点的坐标特征.
专题:规律型.
分析:根据图象上点的坐标性质得出点B1、B2、B3、、Bn、Bn+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、、Sn,进而得出答案.
解答:解:∵A1、A2、A3、、An、An+1是x轴上的点,且OA1=A1A2=A2A3==AnAn+1=1,分别过点A1、A2、A3、、An、An+1
作x轴的垂线交直线y=2x于点B1、B2、B3、、Bn、Bn+1,
B1的横坐标为:1,纵坐标为:2,
则B1(1,2),
同理可得:B2的横坐标为:2,纵坐标为:4,
则B2(2,4),
B3(2,6)
∵A1B1∥A2B2,
△A1B1P1∽△A2B2P1,
=,
△A1B1C1与△A2B2C2对应高的比为:1:2,
A1B1边上的高为:,
=2==,
同理可得出:=,=,
Sn=.
点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S的变化规律,得出图形面积变化规律是解题关键.
篇8:中考数学:掌握二次函数的核心技巧
二、填空题
4(o山东潍坊,第8题3分)已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE上EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()
考点:动点问题的函数图象.
分析:易证△ABE∽△ECF,根据相似比得出函数表达式,在判断图像.
解答:因为△ABE∽△ECF,则BE:CF=AB:EC,即x:y=5:(4-x)y,
整理,得y=-(x-2)2+,
很明显函数图象是开口向下、顶点坐标是(2,)的抛物线
点评:此题考查了动点问题的函数图象,关键列出动点的函数关系,再判断选项.
5(o山东烟台,第12题3分)点P是?ABCD边上一动点,沿ADCB的路径移动,设P点()经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是
考点:平行四边形的性质,函数图象.
分析:分三段来考虑点P沿AD运动,△BAP的面积逐渐变大;点P沿DC移动,△BAP的面积不变;点P沿CB的路径移动,△BAP的面积逐渐减小,据此选择即可.
解答:点P沿AD运动,△BAP的面积逐渐变大;点P沿DC移动,△BAP的面积不变;
点P沿CB的路径移动,△BAP的面积逐渐减小.点评:本题主要考查了动点问题的函数图象.注意分段考虑.
篇9:中考数学:掌握二次函数的核心技巧
二、填空题
3(.泸州第12题)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()
【解答】:解:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,
∵⊙P的圆心坐标是(3,a),
OC=3,PC=a,
把x=3代入y=x得y=3,
D点坐标为(3,3),
CD=3,
△OCD为等腰直角三角形,
△PED也为等腰直角三角形,
∵PEAB,
AE=BE=AB=4=2,
在Rt△PBE中,PB=3,
PE=,
PD=PE=,
a=3+.
【点评】:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.
篇10:中考数学:掌握二次函数的核心技巧
二、填空题
1(山东泰安第17题)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()
【分析】:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.
【解答】:由图可知,m<﹣1,n=1,所以,m+n<0,
所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),
反比例函数y=的图象位于第二四象限,
【点评】:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.
2(.福州第10题)如图,已知直线分别与x轴,y轴交于A,B两点,与双曲线交于E,F两点.若AB=2EF,则k的值是【】
【考点】:1.反比例函数与一次函数交点问题;2.曲线上点的坐标与方程的关系;3.相似三角形的判定和性质;4.轴对称的性质.
篇11:中考数学:掌握二次函数的核心技巧
一、选择题
5、(o宁波第12题)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()
A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)
【考点】:二次函数图象上点的坐标特征;坐标与图形变化-对称.
【分析】:把点A坐标代入二次函数解析式并利用完全平方公式整理,然后根据非负数的性质列式求出a、b,再求出点A的坐标,然后求出抛物线的对称轴,再根据对称性求解即可.
【解答】:解:∵点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,
(a﹣2b)2+4(a﹣2b)+10=2﹣4ab,
a2﹣4ab+4b2+4a﹣8ab+10=2﹣4ab,
(a+2)2+4(b﹣1)2=0,
a+2=0,b﹣1=0,
解得a=﹣2,b=1,
a﹣2b=﹣2﹣21=﹣4,
2﹣4ab=2﹣4(﹣2)1=10,
点A的坐标为(﹣4,10),
∵对称轴为直线x=﹣=﹣2,
点A关于对称轴的对称点的坐标为(0,10).
故选D.
【点评】:本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化﹣对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键.
篇12:中考数学:掌握二次函数的核心技巧
一、选择题
4、(o威海第11题)已知二次函数y=ax2+bx+c(a0)的图象如图,则下列说法:
①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m﹣1).
其中正确的个数是()
A.1B.2C.3D.4
【考点】:二次函数图象与系数的关系.
【分析】:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【解答】:解:抛物线与y轴交于原点,c=0,故①正确;
该抛物线的对称轴是:,直线x=﹣1,故②正确;
当x=1时,y=2a+b+c,
∵对称轴是直线x=﹣1,
,b=2a,
又∵c=0,
y=4a,故③错误;
x=m对应的函数值为y=am2+bm+c,
x=﹣1对应的函数值为y=a﹣b+c,又x=﹣1时函数取得最小值,
a﹣b+c<am2+bm+c,即a﹣b<am2+bm,
∵b=2a,
am2+bm+a>0(m﹣1).故④正确.
故选:C.
【点评】:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
篇13:中考数学:掌握二次函数的核心技巧
一、选择题
3、(山东烟台第11题)二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.
其中正确的结论有()
A.1个B.2个C.3个D.4个
【分析】:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.
【解答】:∵抛物线的对称轴为直线x=﹣=2,b=﹣4a,即4a+b=0,所以①正确;
∵当x=﹣3时,y<0,9a﹣3b+c<0,即9a+c<3b,所以②错误;
∵抛物线与x轴的一个交点为(﹣1,0),a﹣b+c=0,
而b=﹣4a,a+4a+c=0,即c=﹣5a,8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵抛物线开口向下,a<0,8a+7b+2c>0,所以③正确;
∵对称轴为直线x=2,
当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,所以④错误.故选B.
【点评】:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
篇14:中考数学:掌握二次函数的核心技巧
一、选择题
2、(山东泰安第20题)二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:
X﹣1013
y﹣1353
下列结论:
(1)ac<0;
(2)当x>1时,y的值随x值的增大而减小.
(3)3是方程ax2+(b﹣1)x+c=0的一个根;
(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的个数为()
A.4个B.3个C.2个D.1个
【分析】:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.
【解答】:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;
∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,当x>1.5时,y的值随x值的增大而减小,故(2)错误;
∵x=3时,y=3,9a+3b+c=3,∵c=3,9a+3b+3=3,9a+3b=0,3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;
∵x=﹣1时,ax2+bx+c=﹣1,x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.
故选B.
【点评】:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.
篇15:中考数学:掌握二次函数的核心技巧
一、选择题
1、(o济宁第8题)如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()
A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b
【考点】:抛物线与x轴的交点.
【分析】:依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.
【解答】:解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.
函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).
方程1﹣(x﹣a)(x﹣b)=0转化为(x﹣a)(x﹣b)=1,方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.
由m<n,可知对称轴左侧交点横坐标为m,右侧为n.
由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.
综上所述,可知m<a<b<n.
故选A.
【点评】:本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算.