有很多的同学学习很有方法,看他们平时的时候没怎么学习但是一到考试的时候成绩就很好,这就是这些同学会学习。什么叫会学习,就是需要考生在做题和解题的上面多下功夫提升自己解题的能力从而提升理解能力这些都是拿高分的技巧。
一直以来,包括很多数学学霸也会犯的错误是“会而不对,对而不全”,这个老大难问题其实只要多加留心就能避免,并不是什么学习上拦路老虎。有些题同学们并不是不会,或者说是不全会,容易出错情况主要是因为逻辑缺陷、概念错误等原因而与这些分数擦肩而过。
因此,考生做题的时候要注意表达准确、考虑周全、书写规范,以免会做的题目被扣分。而研究表明,对于大部分考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
其次,对于绝大多数的考生来说,更加重要的还是想办法从不太会做的题目中“捞点分”。那么,怎样才能尽量地捞多点分呢?今天给大家分享以下四种方法可供选择。
跳步答题
解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,
“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。
退步解答
“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,
从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。
这样,还会为寻找正确的、一般性的解法提供有意义的启发。
缺步解答
如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,
先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,
或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。
辅助解答
一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。
如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。书写也是辅助解答。
“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真—学习认真—成绩优良—给分偏高。有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是一种能力。